NTU-RGBD骨架数据分析
Linzz

NTU-RGBD Dataset 是目前非常出名的关于人体动作采集的数据集,来自于南洋理工,最近在研究人体动作分类的相关问题,以下是对数据集中骨架数据的分析

骨架文件按以下格式命名:
S001C001P001R001A001
其中:
A001表示第一种动作,共60种
P001表示一号动作执行人,但并非每个人都执行了所有动作
C001表示一号相机视角,共三个视角

每个skeleton文件第一行的数字为该骨架序列的总帧数,从第二行开始分别为每一帧的信息
对于其中每一帧,第一个数字为当前帧body数量(如1或2)
body数量的下一行十个数,形如72057594037931101 0 1 1 1 1 0 0.02764709 0.05745083 为body_info,分别包含了以下信息:

1
2
3
4
5
body_info_key = [
'bodyID', 'clipedEdges', 'handLeftConfidence',
'handLeftState', 'handRightConfidence', 'handRightState',
'isResticted', 'leanX', 'leanY', 'trackingState'
]

再往下一行,数字25,代表骨架joint数量
下面25行12列数据就是这25个joints的信息joint_info,如下:

1
2
3
4
5
joint_info_key = [
'x', 'y', 'z', 'depthX', 'depthY', 'colorX', 'colorY',
'orientationW', 'orientationX', 'orientationY',
'orientationZ', 'trackingState'
]

附上读取处理骨架数据的代码
感谢代码来源:

1
2
3
4
5
6
@inproceedings{stgcn2018aaai,
title = {Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition},
author = {Sijie Yan and Yuanjun Xiong and Dahua Lin},
booktitle = {AAAI},
year = {2018},
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
def read_skeleton(file):
with open(file, 'r') as f:
skeleton_sequence = {}
skeleton_sequence['numFrame'] = int(f.readline())
skeleton_sequence['frameInfo'] = []
for t in range(skeleton_sequence['numFrame']):
frame_info = {}
frame_info['numBody'] = int(f.readline())
frame_info['bodyInfo'] = []
for m in range(frame_info['numBody']):
body_info = {}
body_info_key = [
'bodyID', 'clipedEdges', 'handLeftConfidence',
'handLeftState', 'handRightConfidence', 'handRightState',
'isResticted', 'leanX', 'leanY', 'trackingState'
]
body_info = {
k: float(v)
for k, v in zip(body_info_key, f.readline().split())
}
body_info['numJoint'] = int(f.readline())
body_info['jointInfo'] = []
for v in range(body_info['numJoint']):
joint_info_key = [
'x', 'y', 'z', 'depthX', 'depthY', 'colorX', 'colorY',
'orientationW', 'orientationX', 'orientationY',
'orientationZ', 'trackingState'
]
joint_info = {
k: float(v)
for k, v in zip(joint_info_key, f.readline().split())
}
body_info['jointInfo'].append(joint_info)
frame_info['bodyInfo'].append(body_info)
skeleton_sequence['frameInfo'].append(frame_info)
return skeleton_sequence


def read_xyz(file, max_body=2, num_joint=25):
seq_info = read_skeleton(file)
data = np.zeros((3, seq_info['numFrame'], num_joint, max_body)) # (3,frame_nums,25 2)
for n, f in enumerate(seq_info['frameInfo']):
for m, b in enumerate(f['bodyInfo']):
for j, v in enumerate(b['jointInfo']):
if m < max_body and j < num_joint:
data[:, n, j, m] = [v['x'], v['y'], v['z']]
else:
pass
return data
Powered by Hexo & Theme Keep
Unique Visitor Page View